币安交易所钱包资讯

零知识证明编程——用Circom、Groth16构建证明及验证

发表于 7天前 币安交易所钱包资讯 38

来源:登链社区

为工作程序员提供的 ZKP 教程介绍。

你知道为什么斑马有条纹吗?一种理论是这是一种伪装。当斑马聚集在一起时,这使得狮子更难以区分它们的猎物。狮子必须将猎物从群体中隔离出来才能追捕它[^1]。

人类也喜欢在人群中隐藏。一个具体的例子是,当多个人在一个集体名称下作为一个整体行动时。《联邦党人文集》就是这样创作的[^2]。 另一个例子是 Bourbaki,这是 1930 年代一群法国数学家的集体笔名。这导致了现代数学大部分内容的彻底重写,重点在于严谨性和公理化方法[^3]。

零知识证明编程——用Circom、Groth16构建证明及验证
Bourbaki Congress

在数字时代,假设你在一个群聊中,想要发送一条有争议的信息。你想证明你是其中的一员,而不透露是哪一位。我们如何在数字领域使用密码学来做到这一点?我们可以使用一种叫做 群签名 的东西。

从传统上讲,群签名在数学上相当复杂且难以实现。然而,使用零知识证明(ZKP),这个数学问题变成了一个简单的编程任务。在本文结束时,你将能够自己编写群签名。

介绍

这篇文章将向你展示如何从零开始编写基本的零知识证明(ZKP)。

在学习新的技术栈时,我们希望尽快掌握编辑-构建-运行的循环。只有这样,我们才能开始从自己的经验中学习。

我们将首先让你设置环境,编写一个简单的程序,执行所谓的可信设置,然后尽快生成和验证证明。之后,我们将识别一些改进我们程序的方法,实施这些改进并进行测试。在此过程中,我们将建立一个更好的心理模型,以便在实践中编程 ZKP。最后,你将熟悉(某种方式)从零开始编写 ZKP。

我们将逐步构建一个简单的签名方案,你可以证明你发送了特定的消息。你将能够理解这段代码的作用及其原因:

<span 1="" 9="" 18="" 10px="" 40px="" no-repeat="" height:="" width:="" margin-bottom:="" border-radius:="" code="" template="" signmessage="" signal="" input="" output="" component="" identityhasher="Poseidon(<span" span="" identity_commitment="==" signaturehasher="Poseidon(    # 克隆仓库并运行准备脚本
    git clone git@github.com:oskarth/zkintro-tutorial.git
    cd zkintro-tutorial
    
    # 在执行之前浏览此文件的内容
    less ./scripts/prepare.sh
    ./scripts/prepare.sh

我们建议你浏览 ./scripts/prepare.sh 的内容,以查看这将安装什么,或者如果你更喜欢手动安装。执行后,你应该看到 Installation complete 并且没有错误。

如果你遇到问题,请查看最新的官方文档 这里[7]。完成后,你应该安装以下版本(或更高版本):

    pragma circom 2.0.0;
    
    template Multiplier2 () {
      signal input a;
      signal input b;
      signal output c;
      c <== a * b;
    }
    
    component main = Multiplier2();

这就是我们的特殊程序或 _电路_。 [^6] 按行分析:

  • pragma circom 2.0.0; – 定义所使用的 Circom 版本

  • template Multiplier() – 模板是大多数编程语言中对象的等价物,是一种常见的抽象形式

  • signal input a; – 我们的第一个输入,a;输入默认是私有的

  • signal input b; – 我们的第二个输入,b;同样默认是私有的

  • signal output b; – 我们的输出,c;输出始终是公共的

  • c <== a * b; – 这做了两件事:将信号 c 赋值 约束 c 等于 ab 的乘积

  • component main = Multiplier2() – 实例化我们的主组件

最重要的行是 c <== a * b;。这是我们实际声明约束的地方。这个表达式实际上是两个的组合:<--(赋值)和 ===(等式约束)。 [^7] Circom 中的约束只能使用涉及常量、加法或乘法的操作。它强制要求方程的两边必须相等。 [^8]

关于约束

约束是如何工作的?在类似数独的上下文中,我们可能会说一个约束是“一个介于 1 和 9 之间的数字”。然而,在 Circom 的上下文中,这不是一个单一的约束,而是我们必须使用一组更简单的等式约束(===)来表达的东西。 [^9]

为什么会这样?这与底层的数学原理有关。从根本上讲,大多数 ZKP 使用 _算术电路_,它表示对 多项式 的计算。在处理多项式时,你可以轻松引入常量,将它们相加、相乘并检查它们是否相等。 [^10] 其他操作必须用这些基本操作来表达。你不必详细了解这一点才能编写 ZKP,但了解底层发生的事情可能会很有用。 [^11]

我们可以将电路可视化如下:

零知识证明编程——用Circom、Groth16构建证明及验证

构建我们的电路

供你参考,最终文件可以在 example1-solution.circom 中找到。有关语法的更多详细信息,请参见 官方文档[9]

我们可以通过运行以下命令来编译我们的电路:

零知识证明编程——用Circom、Groth16构建证明及验证

这是调用 circom 创建 example1.r1csexample1.wasm 文件的一个简单包装。你应该会看到类似以下内容:

    {
      "pi_a": ["15932[...]3948", "66284[...]7222", "1"],
      "pi_b": [
        ["17667[...]0525", "13094[...]1600"],
        ["12020[...]5738", "10182[...]7650"],
        ["1", "0"]
      ],
      "pi_c": ["18501[...]3969", "13175[...]3552", "1"],
      "protocol": "groth16",
      "curve": "bn128"
    }

这以一些数学对象(三个椭圆曲线元素)pi_api_bpi_c 的形式指定了证明。[^20] 它还包括有关协议(groth16)和使用的 _curve_(bn128,我们暂时忽略的数学实现细节)的元数据。这使得验证者知道如何处理此证明以正确验证。

请注意,证明是多么简短;无论我们的特殊程序多么复杂,它的大小都只有这个。这展示了我们在 _友好的零知识证明介绍_[10] 中讨论的 ZKP 的 succinctness 属性。上述命令还输出了我们的 _公共输出_:

这是与我们的见证和电路对应的所有公共输出的列表。在这种情况下,有一个公共输出对应于 c:33。[^21]

我们证明了什么?我们知道两个秘密值 ab,它们的乘积是 33。这展示了我们在上一篇文章中讨论的 隐私 属性。

请注意,证明在孤立状态下没有用,它需要随之而来的公共输出。

验证证明

接下来,让我们验证这个证明。运行:

just verify_proof example1

零知识证明编程——用Circom、Groth16构建证明及验证

这需要验证密钥、公共输出和证明。通过这些,我们能够验证证明。它应该打印“证明已验证”。请注意,验证者从未接触到任何私有输入。

如果我们更改输出会发生什么?打开 example1/target/public.json,将 33 更改为 34,然后再次运行上述命令。

你会注意到证明不再被验证。这是因为我们的证明并没有证明我们有两个数字,其乘积是 34。

恭喜你,你现在已经编写了你的第一个 ZKP 程序,进行了可信设置,生成了证明并最终验证了它!

练习

  1. ZKP 的两个关键属性是什么,它们意味着什么?

  2. 证明者的角色是什么,她需要什么输入?验证者呢?

  3. 解释 c <== a * b; 这一行的作用。

  4. 为什么我们需要进行可信设置?我们如何使用其产物?

  5. 代码:完成 example1,直到你生成并验证了一个证明。

第二次迭代

通过上述电路,我们证明了我们知道两个(秘密)数字的乘积。这与 质因数分解 问题密切相关,这是许多密码学的基础。[^22] 这个想法是,如果你有一个非常大的数字,找到两个质数使其乘积等于这个大数字是很困难的。相反,检查两个数字的乘积是否等于另一个数字是非常简单的。[^23]

然而,我们的电路存在一个大问题。你能看到吗?

我们可以轻松地将输入更改为“1”和“33”。也就是说,一个数字 c 始终是 1 和 c 的乘积。这一点并不令人印象深刻,对吧?

我们想要做的是添加另一个 _约束_,使得 ab 不能等于 1。这样,我们就被迫进行适当的整数因式分解。

我们如何添加这个约束,需要做哪些更改?

更新我们的电路

我们将为这些更改使用 example2 文件夹。不幸的是,我们不能仅仅写 a !== 1,因为这不是一个有效的约束。[^24] 它不是由常量、加法、乘法和等式检查组成的。我们如何表达“某物不是”?

这并不是立即直观的,这种类型的问题是编写电路的艺术所在。发展这种技能需要时间,并超出了本初始教程的范围;幸运的是,有许多好的资源可以参考。[^25]

不过,有一些常见的习语。基本的想法是使用 IsZero() 模板来检查一个表达式是否等于零。它对真值输出 1,对假值输出 0。

使用真值表[^26] 来显示可能的值通常是有帮助的。以下是 IsZero() 的真值表:

零知识证明编程——用Circom、Groth16构建证明及验证

这是一个如此有用的构建块,以至于它被包含在 Circom 的库 circomlib 中。在 circomlib 中还有许多其他有用的组件。[^27]

我们可以通过创建一个 npm 项目(JavaScript)并将其作为依赖项添加来包含它。在 example2 文件夹中,我们已经为你完成了这一步。要导入相关模块,我们在 example2.circom 的顶部添加以下行:

include "circomlib/circuits/comparators.circom";

使用 IsZero(),我们可以检查 ab 是否等于 1。修改 example2.circom 文件,使其包含以下行:

<span 1="" 12="" 4000="" 10px="" 40px="" no-repeat="" height:="" width:="" margin-bottom:="" border-radius:="" code="" component="" iszerocheck="IsZero();
    just generate_proof example2
    just verify_proof example2

它仍然按预期生成和验证证明。

如果我们将 example2/input.json 的输入更改为 133 并尝试运行上述命令,我们将看到一个断言错误。也就是说,Circom 甚至不会让我们生成证明,因为输入违反了我们的约束。

完整流程图

现在我们已经经历了整个流程两次,让我们退后一步,看看所有部分是如何结合在一起的。

零知识证明编程——用Circom、Groth16构建证明及验证

希望事情开始变得有些明朗。接下来,让我们提升一下,让我们的电路更有用。

练习

  1. 为什么我们必须运行 example2 的第 2 阶段,而不是第 1 阶段?

  2. 上一个例子的主要问题是什么,我们是如何解决的?

  3. 代码:完成 example2,直到你无法生成证明。

第三次迭代

通过上述电路,我们已经证明了我们知道两个秘密值的乘积。单靠这一点并不是很有用。在现实世界中,有用的是 _数字签名方案_。通过它,你可以向其他人证明你写了特定的消息。我们如何使用 ZKP 来实现这一点?要实现这一点,我们必须首先涵盖一些基本概念。

现在是短暂休息的好时机,去喝一杯你最喜欢的饮料。

数字签名

数字签名已经存在,并且在我们的数字时代无处不在。现代互联网没有它们是无法运作的。通常,这些是使用 公钥密码学 实现的。在公钥密码学中,你有一个私钥和一个公钥。私钥仅供你自己使用,而公钥是公开共享的,代表你的身份。

数字签名方案由以下部分组成:

  • 密钥生成:生成一个私钥和相应的公钥

  • 签名:使用私钥和消息创建签名

  • 签名验证:验证消息是否由相应的公钥签名

虽然具体细节看起来不同,但我们编写的程序和上述密钥生成算法共享一个共同元素:它们都使用 _单向函数_,更具体地说是 _陷门函数_。陷门是容易掉进去但难以爬出来的东西(除非你能找到一把隐藏的梯子) [^30]。

零知识证明编程——用Circom、Groth16构建证明及验证

对于公钥密码学,从私钥构造公钥是容易的,但反过来却非常困难。我们的前一个程序也是如此。如果这两个秘密数字是非常大的质数,那么将该乘积转回原始值是非常困难的。现代公钥密码学通常在底层使用 _椭圆曲线密码学_。

传统上,创建像这些数字签名方案这样的密码协议需要大量的工作,并需要提出一个涉及一些巧妙数学的特定协议。我们不想这样做。相反,我们想使用 ZKP 编写一个程序,以实现相同的结果。

而不是这样:[^31]

零知识证明编程——用Circom、Groth16构建证明及验证

我们只想编写一个程序,生成我们想要的证明,然后验证这个证明。

哈希函数和承诺

我们将使用两个更简单的工具:_哈希函数_ 和 _承诺_,而不是使用椭圆曲线密码学。

哈希函数也是一种单向函数。例如,在命令行中,我们可以这样使用 SHA-256 哈希函数:

    commitment = hash(some_secret)
    signature = hash(some_secret, message)

此时你可能有一些问题。让我们解决一些你脑海中可能存在的问题。

首先,为什么这有效,我们为什么需要 ZKP?当有人验证证明时,他们只能访问承诺、消息和签名。没有直接的方法可以验证承诺是否对应于秘密,而不揭示秘密。在这种情况下,我们只是在生成证明时“揭示”秘密,因此我们的秘密保持安全。

其次,为什么在 ZKP 内部使用这些哈希函数和承诺,而不是公钥密码学?你绝对可以在 ZKP 内部使用公钥密码学,并且这样做是有合理理由的。就约束而言,它的实现成本远高于上述方案。这使得它比上述更慢,更复杂。正如我们将在下一节中看到的,哈希函数的选择非常重要。

最后,为什么在我们已经拥有公钥密码学的情况下还要使用 ZKP?在这个简单的例子中,没有必要使用 ZKP。然而,它作为更有趣的应用的构建块,例如本文开头提到的群签名示例。毕竟,我们想要 _编程密码学_。

这真是太多了!幸运的是,我们已经过了难关。让我们开始编码吧。如果你一开始没有完全理解上述内容,也不用担心。习惯这种推理方式需要一些时间。

回到代码

我们将从 example3 目录开始工作。

要实现数字签名,我们需要做的第一件事是生成我们的密钥。这些对应于公钥密码学中的私钥和公钥。由于密钥对应于一个身份(你,证明者),我们将分别称其为 identity_secretidentity_commitment。它们共同形成一个身份对。

这些将作为电路的输入,与我们要签名的消息一起使用。作为公共输出,我们将拥有签名、承诺和消息。这将允许某人验证签名确实是正确的。

由于我们需要身份对作为电路的输入,因此我们将单独生成这些:just generate_identity

这会产生类似于以下内容:

    include "circomlib/circuits/poseidon.circom";

Poseidon 哈希模板的使用如下:

<span 10px="" 40px="" no-repeat="" height:="" width:="" margin-bottom:="" border-radius:="" code="" component="" hasher="Poseidon(2);
    component main {public [identity_commitment, message]} = SignMessage();

默认情况下,我们电路的所有输入都是私有的。通过这个,我们明确标记 identity_commitmentmessage 为公共。这意味着它们将成为公共输出的一部分。

有了这些信息,你应该有足够的知识来完成 example3.circom 电路。如果你仍然卡住,可以参考 example3-solution.circom 获取完整代码。

像之前一样,我们必须构建电路并运行受信任设置的第 2 阶段:

    {
      "identity_secret": "21879[...]1709",
      "identity_commitment": "48269[...]7915",
      "message": "42"
    }

随意将身份对更改为你自己使用 just generate_identity 生成的身份对。毕竟,你想把身份秘密保留给自己!

你可能会注意到消息只是一个作为字符串引用的数字 ("42")。不幸的是,由于约束在数学上的工作方式(使用线性代数和 _算术电路_),我们只能使用数字而不能使用字符串。电路内部支持的唯一操作是基本的算术操作,如加法和乘法。[^37]

我们现在可以生成和验证一个证明:

    ["48968[...]5499", "48269[...]7915", "42"]

这分别对应于签名、承诺和消息。

让我们看看如果我们不小心,事情可能会出错。 [^38]

首先,如果我们将身份承诺更改为 input.json 中的随机内容,会发生什么?你会注意到我们无法再生成证明。这是因为我们还在电路内部检查身份承诺。保持身份秘密和承诺之间的关系至关重要。

其次,如果我们不将消息包含在输出中,会发生什么?我们确实得到了一个证明,并且它得到了验证。但消息可以是 _任何东西_,因此它实际上并不能证明你发送了特定的消息。类似地,如果我们不将身份承诺包含在公共输出中,会发生什么?这意味着身份承诺可以是任何东西,因此我们实际上不知道 签署了消息。

作为思考练习,想想如果我们省略这两个关键约束中的任何一个会发生什么:

  • identity_commitment === identityHasher.out

  • signature <== signatureHasher.out

恭喜你,现在你知道如何编程加密了![^39]

练习

  1. 数字签名方案的三个组成部分是什么?

  2. 使用像 Poseidon 这样的 “ZK-Friendly hash function” 的目的是什么?

  3. 什么是承诺?我们如何将它们用于数字签名方案?

  4. 为什么我们将身份承诺和消息标记为公共?

  5. 为什么我们需要身份承诺和签名约束?

  6. 代码:完成 example3,直到你生成并验证了一个证明。

下一步

通过上述数字签名方案,以及我们在文章中看到的一些技巧,你拥有了实现文章开头提到的 群签名方案 的所有工具。[^40]

example4 中存在骨架代码。你只需要 5-10 行代码。唯一的新语法是 for 循环,它的工作方式与大多数其他语言相同。[^41]。

这个电路将允许你:

  • 签署一条消息

  • 证明你是三个人之一(身份承诺)

  • 但不透露是哪一个

你可以把它看作一个谜题。关键的见解基本上归结为一个算术表达式。如果可以的话,尝试在纸上解决它。如果你卡住了,可以像之前一样查看解决方案。

最后,如果你想要一些额外的挑战,这里有一些扩展的方法:

  1. 允许组内任意多的人

  2. 实现一个新的电路 reveal,证明你签署了特定的消息

  3. 实现一个新的电路 deny,证明你没有签署特定的消息

使用经典工具创建这样的加密协议将是一项巨大的任务,需要大量的专业知识。[^42] 使用 ZKP,你可以在一个下午变得高效和危险,将这些问题视为编程任务。这只是我们可以做的冰山一角。

练习

  1. 群签名与普通签名有什么不同?它们可以如何使用?

问题

这些问题是可选的,需要更多的努力。

  1. 找出 IsZero() 是如何实现的。

  2. 代码:完成上述群签名方案(见 example4)。

  3. 代码:扩展上述群签名示例:允许更多人并实现 reveal 和/或 deny 电路。

  4. 你将如何设计一个 “ZK 身份” 系统来证明你已满 18 岁?你可能想证明的其他属性是什么?从高层次来看,你将如何实现它,以及你看到的挑战是什么?研究现有解决方案以更好地理解它们是如何实现的。

  5. 对于像以太坊这样的公共区块链,有时会使用 Layer 2 (L2) 来允许更快、更便宜和更多的交易。从高层次来看,你将如何使用 ZKP 设计一个 L2?解释你看到的一些挑战。研究现有解决方案以更好地理解它们是如何实现的。## 结论

在本教程介绍中,我们熟悉了如何从头开始编写和修改基本的零知识证明(ZKPs)。我们设置了编程环境并编写了一个基本电路。然后我们进行了可信设置,创建并验证了证明。我们识别了一些问题并改进了电路,确保测试我们的更改。之后,我们使用哈希函数和承诺实现了一个基本的数字签名方案。

我们还学习了足够的技能和工具,以便能够实现群体签名,这在没有零知识证明的情况下是很难实现的。

我希望你对编写零知识证明所涉及的内容有了更好的心理模型,并对实际中的编辑-运行-调试周期有了更好的理解。这将为你将来可能编写的任何其他零知识证明程序打下良好的基础,无论你最终使用什么技术栈。

致谢

感谢 Hanno Cornelius、Marc Köhlbrugge、Michelle Lai、lenilsonjr 和 Chih-Cheng Liang 阅读草稿并提供反馈。

图片

  • Bourbaki Congress 1938 – 未知,公有领域,通过 Wikimedia[11]

  • Hartmann’s Zebras – J. Huber,CC BY-SA 2.0,通过 Wikimedia[12]

  • Trapdoor Spider – P.S. Foresman,公有领域,通过 [Wikimedia](https://commons.wikimedia.org/wiki/File:Trapdoor_(PSF “Wikimedia”).png)

  • Kingsley Lockbox – P.S. Foresman,公有领域,通过 Wikimedia[13]

参考资料

[1] AI翻译官: https://learnblockchain.cn/people/19584

[2] 翻译小组: https://learnblockchain.cn/people/412

[3] learnblockchain.cn/article…: https://learnblockchain.cn/article/9178

[4] 零知识的友好介绍: https://learnblockchain.cn/article/6184

[5] git 仓库: https://github.com/oskarth/zkintro-tutorial

[6]git 仓库: https://github.com/oskarth/zkintro-tutorial

[7]这里: https://docs.circom.io/getting-started/installation/

[8]zkrepl.dev: https://zkrepl.dev/

[9]官方文档: https://docs.circom.io/circom-language/signals/

[10]友好的零知识证明介绍: https://learnblockchain.cn/article/6184

[11]Wikimedia: https://commons.wikimedia.org/wiki/File:Bourbaki_congress1938.png

[12]Wikimedia: https://commons.wikimedia.org/wiki/File:Hartmann_zebras_hobatereS.jpg

[13]Wikimedia: https://commons.wikimedia.org/wiki/File:Kingsley_lockbox.jpg

[14]AI 翻译官: https://learnblockchain.cn/people/19584

[15]这里: https://github.com/lbc-team/Pioneer/blob/master/translations/9178.md

[16]^2]:  参见 [联邦党人文集(维基百科): https://en.wikipedia.org/wiki/The_Federalist_Papers#Authorship

[17]^3]:  参见 [Bourbaki(维基百科): https://en.wikipedia.org/wiki/Nicolas_Bourbaki#Membership

[18]^8]:  这使得编写约束相当具有挑战性,正如你可以想象的那样。有关 Circom 中约束的更多详细信息,请参见 [https://docs.circom.io/circom-language/constraint-generation/: https://docs.circom.io/circom-language/constraint-generation/

[19]^12]:  线性约束意味着它可以仅通过加法表示为线性组合。这相当于使用常数进行乘法。需要注意的主要是线性约束比非线性约束更简单。有关更多详细信息,请参见 [约束生成: https://docs.circom.io/circom-language/constraint-generation/

[20]算术电路: https://docs.circom.io/background/background/#arithmetic-circuits

[21]^13]:  从数学上讲,我们所做的是确保方程 Az * Bz = Cz 成立,其中 Z=(W,x,1)ABC 是矩阵,W 是见证(私有输入),x 是公共输入/输出。虽然知道这一点很有用,但编写电路时并不需要理解这一点。有关更多详细信息,请参见 [Rank-1 约束系统: https://docs.circom.io/background/background/#rank-1-constraint-system

[22]^15]:  正如在 友好的介绍 文章中提到的那样,2016 年 Zcash 举办的仪式有一个很好的外行播客,你可以在 [这里: https://radiolab.org/podcast/ceremony

[23]^17]:  我们称之为 1-out-of N 信任模型。还有许多其他信任模型;你最熟悉的可能是多数规则,即你信任大多数人做出正确的决定。这基本上就是民主和大多数投票的运作方式。 [↩: #user-content-fnref-17

[24]^22]:  也称为 _密码学难度假设_。请参见 [计算难度假设 (维基百科): https://en.wikipedia.org/wiki/Computational_hardness_assumption#Common_cryptographic_hardness_assumptions

[25]^23]:  有关更多信息,请参见 [https://en.wikipedia.org/wiki/Integer_factorization: https://en.wikipedia.org/wiki/Integer_factorization

[26]^24]:  虽然我们可以添加 _asserts_,但这些实际上不是约束,仅用于清理输入。有关其工作原理,请参见 [https://docs.circom.io/circom-language/code-quality/code-assertion/: https://docs.circom.io/circom-language/code-quality/code-assertion/

[27]https://www.chainsecurity.com/blog/circom-assertions-misconceptions-and-deceptions: https://www.chainsecurity.com/blog/circom-assertions-misconceptions-and-deceptions

[28]^25]:  这份由 0xPARC 提供的资源非常出色,如果你想深入了解编写 (Circom) 电路的艺术: [https://learn.0xparc.org/materials/circom/learning-group-1/circom-1/: https://learn.0xparc.org/materials/circom/learning-group-1/circom-1/

[29]^26]:  由于编写约束的性质,这种情况经常出现。请参见 [https://en.wikipedia.org/wiki/Truth_table: https://en.wikipedia.org/wiki/Truth_table

[30]^27]:  有关 circomlib 的更多信息,请参见 [https://github.com/iden3/circomlib: https://github.com/iden3/circomlib

[31]^28]:  请参见 [https://github.com/iden3/circomlib/blob/master/circuits/comparators.circom: https://github.com/iden3/circomlib/blob/master/circuits/comparators.circom

[32]^29]:  人们通常在项目之间共享这些 ptau 文件以提高安全性。有关详细信息,请参见 [https://github.com/privacy-scaling-explorations/perpetualpowersoftau: https://github.com/privacy-scaling-explorations/perpetualpowersoftau

[33]https://github.com/iden3/snarkjs: https://github.com/iden3/snarkjs

[34]^30]:  这里的梯子代表某种值,使我们能够以相反的“困难”方式进行。另一种思考方式是将其视为一个挂锁。你可以轻松锁定它,但很难解锁,除非你有钥匙。陷门函数也有更正式的定义,请参见 [https://en.wikipedia.org/wiki/Trapdoor_function: https://en.wikipedia.org/wiki/Trapdoor_function

[35]^31]:  来自维基百科的截图。请参见 [ECDSA (维基百科): https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm#Signature_verification_algorithm

[36]^38]:  在现实世界的数字签名方案中,当多个消息交换时,我们可能还希望引入一个加密随机数。这是为了避免重放攻击,即某人可以在稍后时间重用相同的签名。请参见 [https://en.wikipedia.org/wiki/Replay_attack: https://en.wikipedia.org/wiki/Replay_attack

[37]^40]:  在 ZKP 中实现群签名的灵感来自 0xPARC,请参见 [https://0xparc.org/blog/zk-group-sigs: https://0xparc.org/blog/zk-group-sigs

[38]^41]:  请参见 [https://docs.circom.io/circom-language/control-flow/: https://docs.circom.io/circom-language/control-flow/

[39]^42]:  相比之下,实施群签名的论文如 [https://eprint.iacr.org/2015/043.pdf: https://eprint.iacr.org/2015/043.pdf

相关文章

Bitget研究院:市场大跌暂无反弹迹象,Bitget两周第三次Launchpool使BGB价格坚挺

过去 24 小时,市场出现了不少新的热门币种和话题,很可能它们就是下一个造富机会,其中: 造富效应强的板块是: […]

以太坊新增钱包数(7日MA)处于2023年12月以来的最低水平

博链财经BroadChain获悉,8月5日,据The Block,数据显示,以太坊新增钱包数(7 日 MA)处 […]

比特大陆投资的比特币生态项目BEVM宣布大力发展链上算力金融—HashFi

‍近期,比特币大陆投资的BTC L2项目——BEVM发布长文阐述大力发展链上算力金融(HashFi)的原因和目 […]

加入币安交易所钱包,探索区块链世界!

探索DeFi,DApps, NFTs 和GameFi的世界,一起创造未来!

  • 方便快捷
    方便快捷

    随时随地都可在线赚钱

  • 性能稳定
    性能稳定

    响应速度快,放心有保障

  • 用户体验
    用户体验

    响应式布局,兼容各种设备

  • 持续更新
    持续更新

    不断升级维护,更好服务用户